Welfare of the Dairy Cow

Dairy cows are susceptible to a range of serious welfare issues. These include health problems such as lameness and mastitis, infertility and high mortality or culling rates. Factors such as pasture access and comfort affect physical health, but also impact psychological well being and expression of natural behaviours. This information sheet outlines the main issues involved, and offers practical alternative solutions.

Pasture Access

A survey in the UK found 95% of the public surveyed thought it unacceptable to keep cows indoors permanently, whilst 73% thought it was acceptable to keep cows outdoors in summer and indoors in winter (Ellis et al. 2009). In a different survey (Canada), consumers rated animal welfare as the second most important priority (after food safety) (Maynard 2012). Scientific evidence shows that pasture access has proven benefits to cow welfare, for improved health, natural behaviour and access to a preferred environment, and to milk quality.

Preventing access to pasture was recently described as one of the top hazards to dairy cow welfare (EFSA 2009b, Rushen 2012). Public engagement is imperative to develop socially sustainable practices, which can persist in the long term (Weary et al. 2012), and pasture access is viewed as being important by the public (Ellis et al. 2009). In Europe the majority of farms provide seasonal grazing, with pasture access in summer and indoor housing for the other 5-7 months (EFSA 2009a). The extent of pasture access is determined by factors including herd size, pasture availability, distance from pasture to milking, weather conditions and supplementary feeding required for high-yielding cows (EFSA 2009a). The high metabolic demand of modern Holstein-Friesians has meant that some cows are now kept indoors all year round (‘continuous housing’). In the EU, the highest reported approximate rates of continuous housing are in Germany (58%), Slovenia (60%) Denmark (75%), Czech Republic (80%), Spain (80%), Greece (85%) and Italy (90%) (EGF 2011, Webster 2012). In the UK approximately 10% of cows are now continuously housed (CIWF 2013 estimation, pers. comms.). The amount of access also varies within countries and between regions. For example in the Netherlands approximately 15% of cows are continuously housed and 52% have limited pasture access (EFSA 2009a, FAWC 2010); and in Germany 70-80% have some pasture access, but in Bavaria 84% are continuously housed (Webster 2012). In Sweden and Finland permanent-housing is illegal and cows must have access to pasture. Overall across the EU it is estimated that 38% of cows are kept continuously housed (Webster 2012, CIWF 2013 estimation, pers. comms.). Organic systems require unrestricted pasture access, except during winter, but account for only a small percentage of farms and derogations reduce the actual number with access.

Health

Pasture provides numerous health benefits including reductions in mortality, mastitis, metritis, teat trampling, dystocia, retained placenta and ketosis (EFSA 2009a). The effect of pasture on somatic cell count (SCC, a reliable indicator of udder infection) is unclear, but generally pasture reduces the risk of udder problems (EFSA 2009b). The most common problem from restricting grazing is lameness (EFSA 2009a). Studies world-wide have found hoof disorders and lameness are more prevalent in permanent-housing systems and during winter in seasonal-grazing systems (EFSA 2009a). Leg disorders such as Digital Dermatitis (DD), sole haemorrhage and swollen knees are also greater without pasture access. Good-condition pasture improves hoof health as it is a comfortable and healthy surface to stand on (Hernandez-Mendo et al. 2007). It allows normal walking and even weight distribution (Anderson 2008), whereas slippery floors cause them to walk abnormally to feel stable. Indoor housing increases the risk of leg disorders due to walking on concrete and spending time standing in manure (DCWS 2012). Pasture access after free-stall housing reduced sole lesions and improved
claw puncture-resistance when measured 110 days later, which was associated with fewer foreign body penetrations, trauma and secondary claw infections (Winkler and Margerison 2012). This claw strength was likely due to the less concentrated diet and reduced metabolic stress later in lactation, as well as the pasture access.

Even a brief period of pasture access can help lame cows recover. Mobility scoring, which assesses the ability to walk, improved by an average of 0.22 (when measured on a scale of 1: normal to 5: severely lame) on pasture, compared to permanently-housed cows (Hernandez-Mendo et al. 2007), also supported by later findings (Figure 1). A long-term study found that cows on pasture had better locomotion, straighter rear legs, a steeper foot angle and healthier legs and hooves overall, compared to permanently-housed cows in cubicles, on a straw yard, or housed with access to a loafing area (Onyiro and Brotherstone 2008). Pasture access can increase the net growth-rate of hooves (growth rate / wear rate) (Chapinal et al. 2010), and therefore can improve hoof health. Lameness and hock swelling incidence during winter was lower on pasture than permanent-housing systems (Haskell et al. 2006). The length of winter housing also has an effect, as the prevalence of lameness increased after housing for 61 days or more (Barker et al. 2010). Exercise is important for health, as it reduces leg disorders and improves lying and rising transitions. Cows housed in tie-stalls, in which they are tied by the neck, were less likely to be lame when given regular exercise all year; and hock joint alterations and overall medical treatment were lower in loose housing with regular exercise than tie-stall housing with regular summer but little winter exercise (Regula et al. 2004). Other forms of exercise, such as access to a dry lot, are less beneficial to health than pasture-based exercise, in reducing mastitis and DD (EFSA 2009a).

Figure 1. Effect on locomotion score (numerical rating score ‘NRS’, score increases with level of lameness) after providing pasture access or free-stall housing (Hernandez-Mendo et al. 2006).

There are risks associated with pasture access, including bad weather, parasites, toxic plants, competition for food under high stocking densities, poor energy intake, and hoof problems due to water-logging or stony tracks. During transition (late pregnancy to early lactation) feed intake may be insufficient, especially with low fibre content. There can also be negative effects of exercise if cows have to walk too far (eg. to be milked) or too fast (>5km/hour). Subordinate cows use shade on pasture less often and are more willing to choose lower-quality shade to avoid dominant cows (Pinheiro Machado Filho et al. 2012). Cows are highly motivated to access shade in hot conditions (Schütz et al. 2008). Therefore to reduce competitive aggression, cows on pasture need sufficient high-quality shade or shelter, of at least 5m² per cow (Schütz et al. 2012). Automatic Milking Systems (AMS) may be less suitable for pasture, as cows may be reluctant to be milked or to go to pasture if they are far apart. Cows visited their AMS less often with unrestricted, than restricted (0 or 12 hours/day) pasture access (Ketelaar-de Lauwere et al. 1999). Cows kept on pasture far-away also visited less
often, however only for the start of the grazing season (Wiktorsson and Sporndly 2002). In addition, cattle synchronize their visit to an AMS when kept on pasture (Ketelaar-de Lauwere et al. 1999) and are adaptable to walking long distances. A well designed cow traffic system is required when using AMS in combination with pasture. Using one-way gates at the barn entrance and exit to pasture (Wiktorsson and Sporndly 2002), only allowing pasture access after using the AMS (Spörndly and Wredle 2004), or using operant conditioning to train cows to return from pasture to a noise signal (Wredle et al. 2006) will optimize cow traffic and limit the number requiring to be manually fetched (Jacobs and Siegford 2012). To achieve good health, particularly for hooves, cows need access to well-managed pasture or other outdoor areas, at least during summer and dry weather (EFSA 2009b), with supplementary feed during transition.

Behaviour

Pasture allows a greater range of natural behaviour expression. As many as 40 different categories of normal behaviour are defined in cattle (Kilgour 2012), many of which are not seen in modern dairy cows. The daily time budget of free-living cattle involves approximately 5-9 hours grazing, 5-10 hours ruminating, 4-10 hours resting and walking across distances of 1.7-12.6 km (Kilgour 2012). Modern dairy cows have a strong motivation for lying (EFSA 2009b) and lie for 9-14 hours a day, much longer than wild-living cattle (Anderson 2008, EFSA 2009a). It is affected by factors including space, stall comfort (O’Connell et al.1993), pasture condition, climate, age and parity. Cows lie less in muddy conditions, on wet bedding covered with faeces, in hot conditions, and on pasture fertilised with potassium instead of sodium; and more with age, more lactations, and in longer, fewer bouts on pasture than indoors (O’Connell et al. 1989; Singh et al. 1993, Phillips et al. 1999, Tucker et al. 2010, Steensels et al. 2012).

Lying is important to welfare for several reasons. Cows with pasture access can spend 80-99% of their lying time on pasture (Ketelaar-de Lauwere et al. 1999). Cows ruminate while lying (Steensels et al. 2012), which is needed for normal digestion and increases with increasing yield (Norring and Valros 2010). Lame cows can also spend longer lying, as found in permanently-housed cows (Blackie et al. 2011) and may be reluctant to rise after lying down. Tie-stall housed cows, many of which had hock inflammations, took longer to lie down than loose-housed cows with pasture access (Krohn et al. 1993). Cows spent longer lying on a woodchip surface than when kept on concrete, gravel or paddock surfaces. Cows on these other surfaces spent longer lying during 3 hours of restricted pasture access (Fisher et al. 2003). This suggests limiting pasture access, such as during periods of bad weather, compromises grazing and consequently health, as cows prioritise lying on the comfortable surface instead. Restricting pasture access from 8 to 4 hours per day also reduces dry matter intake and milk yield (Mattiauda 2013).

Social and grooming behaviour is also affected by pasture access. Cows performed less excessive sniffing and licking of other cows, equipment or the ground on pasture than in tie-stalls; and one hour of outdoor exercise in tie stall systems reduced the behaviour, indicating tie stalls are under-stimulating (Anderson 2008). Confinement also increases aggression and reduces benign interactions (O’Connell et al. 1989), presumably because cows are prevented from normal interactions to determine social hierarchy. Agonistic interactions can be much higher in indoor free-stall systems than on pasture (Miller and Wood-Gush 1991). This is likely due to space, because the restricted space allowance prevents them avoiding aggressive individuals. Behaviour indoors in free-stall housing with inadequate space for lying and rising appears worse than on pasture (Schrer and Pelzer 2006). However, with a spacious, comfortable lying area and rubber flooring, behaviour indoors can be similar to pasture (cited in Anderson 2008). Pasture has a relaxing, stress-reducing effect on cows when indoors later that day, particularly for low-ranking cows which experience the most social stress (Irrgang and Knierim 2012). Longer pasture access (8 compared to 4 hours) improved the relaxing effects, indicated through lower heart rates and less aggressive interactions; while cows with no pasture access had the highest stress levels indoors (Irrang and Knierim 2012).
Preference for Pasture

Cows show a general preference for being on pasture (for ~50% of the day, as shown in Figure 2), but this is affected by different factors including nutrition. Long-term genetic selection for milk yield has changed the form, size, spatial requirements and metabolic demands of modern dairy cows, which now produce an average milk yield of 28L per day, and individual cows can produce twice this (EFSA 2009b, Huxley and Green 2010). Cows offered a choice after milking between going indoors with total mixed ration (TMR) or to pasture chose indoors almost twice as often and spent more time indoors (Charlton et al. 2011). Fresh TMR provided after morning milking probably encouraged the cows to go indoors. High-yielding cows spent longer indoors, whereas cows with a high body-condition score spent longer outdoors (Charlton et al. 2011). The cows on pasture spent almost half of their time grazing, which suggests that when their nutritional needs are met, they prefer pasture. Cows showed a partial preference for pasture (71% of time), between indoors or pasture-only, which was unaffected by TMR provision in both locations (Charlton et al. 2010). As food supplementation increases and pasture access is restricted cows spend more time indoors (Wiktorsson and Sporndly 2002). Those in late lactation spent 13 hours per day, mostly at night, on pasture when given the choice, with less than 1/3 of time on pasture between morning and evening milking (Legrand et al. 2009). The cows also lay more on pasture than in free-stalls, but lay for longer overall when offered the choice of indoors and pasture. TMR intake also reduced by 14% compared to permanently-housed cows, which may be unsuitable for cows in early lactation. The time cows spent on pasture during the day decreased with increasing temperature-humidity index and decreased at night with rainfall (Legrand et al. 2009). This preference for pasture at night and indoor free-stall housing (with TMR) during the day has been recently supported (Falk et al. 2012).

Figure 2. Time spent on pasture through the day with access to free-stall housing and pasture (Legrand et al. 2009).

Climate also affects pasture preference. During rain, which can reduce skin temperature by 26% (Schutz et al. 2010), cows chose to go indoors more than to pasture (Wiktorsson and Sporndly 2002, Charlton et al. 2011, Falk et al. 2012). When given the choice between shelter without food, or food outdoors with rain and wind, cows chose the shelter and ate 62% less (Schutz et al. 2010). Excessive heat also reduces the willingness to use pasture. Modern dairy cattle are susceptible to heat stress due to metabolic heat production (EFSA 2009b) and generally cannot cool themselves above 25°C. At temperatures >25°C, cows chose to stand in shade rather than lie in sunlight, even after being deprived of lying for 12 hours (Schutz et al. 2008). This shows that shade is more important than lying at high temperatures. With every degree increase in temperature (temperature humidity index range 32.5-77.4), cows spent 2.13 less minutes outside (Hanna et al. 2010). Cows also feel uncomfortable in high humidity, and cows with free pasture access spent less time outdoors between 10.00-17.00h (Ketelaar-de Lauwere et al. 1999). Lying time indoors also increases in higher temperature and humidity (Falk et al. 2012). When cows were given access to a self-activated shower, they used the shower for...
0.3 hours more for every 1°C increase in temperature (Legrand et al. 2011). In contrast, it is often perceived as being unsuitable to put dairy cows outdoors during winter. They have been found to spend less time on pasture as the season changes from summer to winter (Charlton et al. 2010). During summer, cows spent ~17 hours/day outdoors when given the choice, including most of the night (Krohn et al. 1992). In winter this reduced to ~5 hours, to 0 hours on frosty days, but they did spend 1-3 hours outdoors on some winter nights. When offered a choice for 3 hours, all cows went outside for one hour and most for 3 hours, during weather which ranged from sun to high wind and snow (temperatures -11 to +7 °C) (Vasseur and Bergeron 2012). Cows spent most of the first hour outside at the feeder. Availability of free-stalls did not affect the time on pasture, which suggests that cows preferred using indoor housing to eat and escape poor weather, rather than for lying in stalls (Falk et al. 2012).

A reduced dry feed intake and milk yield is one reason that dairy cows may not be given pasture access, particularly after milking (Soriano et al. 2001). However cows are highly motivated to eat during the day (DeVries 2003), and indoor-housed cows consume 80% of their daily dry matter intake in the evening (Huzzey et al. 2007). Allowing cows overnight pasture access can provide a practical solution to pasture access which avoids compromising feed intake. Holstein cattle fed indoors during the day and given overnight pasture access (temperature 4-37°C) had no negative effects on dry matter intake, body condition, lying time or milk production; compared to permanently-housed cows (Chapinal et al. 2010). Dairy heifers’ do not show a preference for pasture if they have not had previous experience, as they learn naturally to use pasture through social facilitation and grazing is a learned behaviour (Motupalli et al. 2013). Additionally, cows have been shown to be equally motivated to access pasture as TMR after milking (Cestari et al. 2013). When good quality pasture is unavailable, loafing areas can provide cows outdoor access. Loafing is any behaviour that is not related to feeding, milking or calving, and the area is used by cows for oestrus behaviour, socialising, grooming and exploring (Langford et al. 2013). Concrete loafing areas are laborious to clean and unsuitable for lying, whereas a grassy paddock loafing area is preferred by cows and will be used more for lying by cows that are housed in free stalls (Langford et al. 2013).

Overall, in wet or very cold conditions, cows prefer to be indoors. In warm conditions (~9-24°C) low-yielding and high body-condition cows, with experience of it, prefer pasture, whilst high-yielding cows prefer to be indoors during the day and on pasture at night. In hot conditions (>25°C), cows prefer pasture at night, or during the day with shade. Free-stall housing strengthens the preference, as cows prefer pasture to lie on. If feed, water and shade are provided in housing and on pasture, cows can make a choice, which is the gold standard for welfare. When pasture is unavailable, loafing areas can provide outdoor access.

Milk Quality

There are significant nutritional benefits to milk produced from cows fed pasture-based diets compared to cereal based and TMR diets. These include higher levels of important fatty acids (White et al. 2001; Bergamo et al. 2003; Walker et al, 2004; Butler et al, 2008), vitamins and minerals (Bergamo et al. 2003; Butler et al. 2008), and lower total milk fat percentage (White et al. 2001). Omega-3 fatty acids, linked to improved neurological function and protection against coronary heart disease and some cancers (Ellis et al. 2006), are greater in milk from cows in low-input, pasture-based systems than high-input concentrate-based systems. Additionally, the ratio of omega-3 to omega-6 is found to be closer to the recommended levels to achieve good health (Butler et al. 2008) in milk from pasture-fed cows. Organic milk has higher concentrations of beneficial fatty acids than conventional milk, including total polyunsaturated fatty acids (PUFA), conjugated linoleic acid (CLA) and α-linolenic acid (Bergamo et al. 2003. CLA and PUFA are also higher in milk from cows given pasture access (White et al. 2001; Walker et al. 2004; Butler et al. 2008). CLAs have been shown to have potential anticarcinogenic and anti-atherosclerotic effects (heart health benefits) (Ellis et al. 2006) and can even help to reduce body fat levels (DeLany and West 2000). Increasing the level of pasture intake increases the levels of
CLA (Butler et al. 2008), and importantly CLA levels are 50% higher when pasture is grazed as opposed to fed as cut-grass (Offer, 2002), indicating the importance of grazing pasture. β-carotene, lutein (both important for eye health) and α-tocopherol (a form of vitamin E) is also significantly higher in milk from low input systems.

Lameness

Lameness is a multi-factorial disease, and is typically a symptom of infectious disease, such as foot rot and DD, and non-infectious disease, such as sole ulcers, sole haemorrhages or white line lesions (Keyserlingk et al. 2009). It is a serious welfare issue which results in multiple problems including pain, reduced body condition, reduced milk yield, reduced dry matter intake, reduced fertility and an increased likelihood of culling. In Europe, the level of lameness has not reduced for the last 20 years (EFSA 2009b). In a UK survey (of 205 farms, across a range of systems during winter), the mean prevalence of lameness was 36.8% (range 0-79%) and 5.3% (range 0-31%) of cows were severely lame (Barker et al. 2010). FAWC (2009) recommend that the incidence of lameness should be urgently reduced. Awareness of the costs associated can provide encouragement for proactive management, as lameness costs an average of €53 per cow every year, and DD causes the highest financial burden (Bruijnis et al. 2012).

Locomotion and bone quality were found to be poorer in free-stall housing than in other systems (straw yard, pasture or loafing systems); whilst locomotion, foot angle and mammary composite score were worse on straw yards than pasture (Onyiro and Brotherstone 2008). Lameness was lower in pasture than permanently-housed herds, as were knee swellings; and lameness was highest in permanently-housed free-stall, compared to straw yard systems (Haskell et al. 2006). Lameness levels were lower on organic than conventional farms (Barker et al. 2010). Mobility improved significantly in lame cows when put on pasture for 4 weeks, whereas those in indoor housing remained stable or got worse (Hernandez-Mendo et al. 2007). As discussed, pasture can be hugely beneficial for lameness. However, poor hoof health can occur if pasture is poorly maintained. Levels of DD and interdigital dermatitis and sole and heel lesions can be higher on pasture than indoors (Baird et al. 2008, EFSA 2009a), although cows with DD had lower maximum heel erosion scores on pasture than indoor cows (Baird et al. 2008).

Other risk factors for lameness include standing in manure and on wet floors, overcrowding, dirty or inconsistent use of footbaths, poor management of silage, food sorting (which reduces nutrient intake), stress, poor claw maintenance, automatic alleyway scrapers (which coat hooves in manure) and slippery floor surfaces (DCWS 2012). Breed also has an effect, as Holstein-Friesians had poorer claw health than Norwegian cows (Baird et al. 2008). Too few or undersized free-stalls can cause ‘perching’, when cows stand with their front feet perched on the stall, which leads to lameness. Standing indoors for long periods before calving, particularly perching, increased the risk of sole ulcers or severe haemorrhage later in lactation (Figure 3, Dippel et al. 2011). This highlights the importance of good housing design, with comfortable lying areas to minimize perching.

Figure 3. Standing behaviour of cows for 2 weeks before calving, diagnosed as healthy or with a lesion 15 weeks after calving (Dippel et al. 2011).
Cows on pasture required to walk long distances (eg. 700m) on stony outdoor tracks can have poor condition hooves, though track quality is more important than the distance walked (Laven 2012). Hoof lesions also increased on solid concrete floors compared to straw yards (Webster 2002, Somers et al. 2003), slatted floors (Frankena et al. 1992) and rubber floors (Hultgren and Bergsten 2001). Lameness is also increased by damaged or slurry-covered concrete, cows pushing each other in yards and slipping, housing for more than 61 days and not treating within 48 hours of incidence (Van de Tol et al. 2005, Barker et al. 2010). Breeds other than Holstein-Friesians have a lower risk of lameness, independent of milk yield.

“If you don't measure it, you can't manage it. The key to preventing lameness is to keep feet clean and dry”. (DCWS 2012)

Management is essential to prevent and treat lameness, but may not be applied due to a lack of time or labour, inadequate hoof-trimming facilities or cost (Whay 2012). Locomotion scoring should be frequently carried out on every cow; the Dairy Co 4-point Mobility Scoring System is an example of a standard, easy to use system. To be scored accurately, cows should walk on a flat, even surface, in a straight line or around a corner, and ideally by an impartial person. Cows identified as lame should then be promptly diagnosed and treated, as early detection and treatment improves the likelihood of recovery (Dairy Co 2013a). EFSA (2009b) recommend that locomotion scoring and foot lesion assessment should be carried out every 3 months, and if 10% or more of the herd have difficulties, changes should be made to housing, management and genetic strain. They consider a 2% level of lameness achievable on commercial farms. Observing cattle in pasture systems can be difficult and time consuming (Siegford et al. 2012), but accelerometers (leg monitors) are a useful tool which can be used to record behaviour including reduced or excessive lying (<9 or >14 hours, as shown in Figure 4), which indicates lameness, as well as feed intake and reproductive status (Siegford et al. 2012, Solano et al. 2012). Hoof trimming, such as Dutch 5-step trimming (Nadis 2009), should be practiced when necessary to treat and prevent lameness. It is now recommended that claws should not be trimmed to a fixed length due to the variation between individuals (Blowey and Inman 2012). Particular care should also be taken when trimming feet with lesions, to not remove excess horn (Blowey and Inman 2012). Non-Steroidal Anti Inflammatory Drugs (NSAIDs) should be considered during treatment for lameness, as procedures such as hoof trimming can be painful, and used routinely for claw horn disease (Laven 2012).

Figure 4. Lying behaviour of cows that were not lame, moderately lame or severely lame (Ito et al. 2009).

Further measures to prevent and treat lameness include regularly using a footbath, ideally daily after milking (depending on the chemical used); keeping housing areas clean and dry; good nutrition and providing a comfortable recovery area for lame cows (DCWS 2012). EFSA (2009a) stress that for the welfare of the cow, the full range of outdoor and indoor conditions count, so that welfare is “cumulative and interactive”. For
example, improved claw health on pasture prevents lameness and reduces sensitivity to hard floors surface during indoor housing.

Mastitis

Mastitis is a common, painful disease caused by multiple factors. Cows with mastitis show a withdrawal from normal behaviour and changes include reduced lying, an increased preference for lying on one side, more walking and weight-shifting, and higher reactivity and restlessness during milking (Medrano-Galarza et al. 2012). These indicators can be used to detect moderate to severe mastitis, but mild mastitis causes only minor changes in lying and behaviour during milking which indicates discomfort. Detecting and alleviating pain caused by mastitis is also commonly overlooked (Medrano-Galarza et al. 2012). Mastitis can cause serious financial losses to dairy farmers. Modelling (based on real data) predicted that as mastitis levels increase profits reduce, and farms with the highest levels of mastitis (Bulk SCC >400,000 cells/mL) had 62% less profits than those with the lowest rates of mastitis (Bulk SCC <100,000 cells/mL) (Geary et al. 2012). Clinical and sub-clinical mastitis also causes reproductive performance to suffer (Geary et al. 2012).

In conventional systems, udder health is largely maintained by the use of antimicrobials, leading to concerns that mastitis will be worse in organic systems because of restricted antibiotic use. There are conflicting results as to whether SCC levels from organic farms are higher (Hovi and Roderick 2000, Roesch et al. 2007), lower (Sato et al. 2005; Fall et al. 2008) or equivalent (Busato et al. 2000) to levels from conventional (non-organic) farms. However, a recent large scale study of individual cows on 40 organic and 40 non-organic farms in the UK found that organic systems and straw yard housing did not influence SCC (Haskell et al. 2009). Additionally, rotational grazing reduced the risk of mastitis compared to permanently housed or constant pasture systems, and non-α-galactae streptococci was lowest in rotational systems (Goldberg et al. 1992). Green et al. (2007) also found no evidence that straw yard housing increased the risk of mastitis and confirmed the benefit of rotational grazing over constant grazing for lowering mastitis risk. SCC appears to be generally lower in summer, regardless of the type of system and varies hugely between individual farms (Frelich and Slata 2011).

One of the main risk factors for mastitis and elevated SCC is poor hygiene, which is more likely to occur in multi-parous and high-yielding cows (Devries et al. 2012). Older cows have larger, deeper udders which are more likely to get covered in manure nearer the floor, and higher-yielding cows are required to eat more, which increases their risk of dirty hind limbs as they spend longer standing in the feed bunk alley (Devries et al. 2012). Mastitis can be managed by providing a clean environment for standing (eg. feeding area and alleyways) and lying, particularly in free-stalls (Devries et al. 2012). Encouraging cows to stand after milking by providing feed allows their teats to close before lying down, as standing for <90 minutes after milking could increase SCC (Devries et al. 2012, Watters et al. 2012). Further measures which can reduce mastitis are pasture access (due to the lower infection pressure); keeping late-gestation heifers with the herd (which is less stressful than mixing post-partum); removing super-numerary teats (to improved udder hygiene, ensuring analgesia is given); and not using an AMS (perhaps due to their reduced efficiency at teat cleaning and detecting sub-clinical mastitis or limited access for some individuals) (Santman-Berends et al. 2012, Wagner et al. 2012). To help manage mastitis, SCC should be measured at the individual, not herd level. An extra staff member in the milking pit can help identify mastitis and milking teat cup liners should be changed every 2500 milkings, which is equivalent to monthly for some herds (DairyCo 2013b). The six-point plan for controlling mastitis comprises 1) hygienic teat management, 2) prompt identification and treatment of clinical mastitis, 3) dry cow management and therapy (for infected cows) 4) culling chronically affected cows, 5) regular maintenance of the milking machine and 6) good record keeping (DairyCo 2013c).
Comfort

Keeping dairy cows in tie stalls, which are common in more traditional systems, present multiple welfare issues. Movement and exercise are severely restricted, grooming and social interaction is impaired (Anderson 2008), there is an increased risk of lameness and hock inflammation (Krohn and Munksgaard 1993, Regula et al. 2005,) cows are unable to escape dominant individuals (EFSA 2009b) and stalls can be poorly fitting. The use of electric shocks to train cows to excrete outside of the stall causes physical problems (Oltenacu et al. 1998 cited in EFSA 2009b) and will cause stress, and tethering tails prevents cows being able to deter flies. A recent survey of 226 farms across Europe found that 35% of cows were kept in tie stalls, particularly in Eastern countries and central and southern mountainous regions (Alcasade 2009). Tie stalls are becoming less common and are not normally permitted in European Organic systems.

The majority of European dairy cows are now housed in free-stall barns (EFSA 2009a). These contain cubicles, which may consist of a mattress with some or no bedding, soil covered with straw, or deep-bedding, such as sawdust or sand. There are commonly the same number of cows as stalls, and in many systems, stall dimensions may be too small for the modern Holstein-Friesian cow. Modern dairy cows lie for 12 hours a day and become stressed if deprived of lying; shown by behavioural and physiological indicators (Fisher et al. 2002, Jensen et al. 2004, Munksgaard and Thomsen 2012). Cows may prioritise lying, although a conflict may arise in high-yielding cows between lying and eating. Reduced lying can also reduce food intake and yield (Munksgaard and Thomsen 2012). It is important that the lying area is comfortable and meets their needs, particularly because hock lesions can become more prevalent during lactation (Tucker et al. 2012). Figure 5 shows a outcome based checklist that can be carried out to assess comfort levels on farm.

Bedding has different effects on comfort and health. Deep-bedded sand improves milk yield and is better for welfare (for cleanliness, hock condition and lameness) than free-stalls with rubber mats or mattresses (Andreasan and Forkman 2012), but is not always practical to use. Deep-bedded open barns are uncommon in Europe, but more popular in North America, where different bedding materials are utilised, such as peat moss and recycled manure solids (RMS). RMS is produced by a liquid-solid separator, anaerobic digester or composter (DCWS 2012) and originated in the USA, but has spread to Israel and the Netherlands. Well-managed, deep-bedded RMS barns with good ventilation improve welfare by reducing lameness and voluntary culling due to poor milk yield and improving SCC, cleanliness, comfort, lying time, freedom of lying positions, sleep, and oestrus and play behaviour, compared to mattress stalls with some RMS (Black et al. 2012, Husfeldt and Endres 2012).

Open barns also allow cows to lie laterally, which is restricted in free-stall housing (Langford et al. 2013) and is when most REM sleep occurs (essential for the brain and important for learning and memory) (Capellini et al. 2008). Open barn housing or pasture also allows cows to lie in their preferred orientation and near companions. In Europe, Holstein and Jersey cows lie and feed for longer in open deep straw-bedded than free-stall housing (Campier et al. 2012). Cows given a grassy paddock loafing area used it for lying if they were housed in free stalls, or loafing if they were kept in deep straw barns (Langford et al. 2013), which shows the difference in lying comfort between the systems. Improved cow comfort has also been associated with improved milk yield (van Eerdenburg et al. 2012).

Mortality

Mortality levels in dairy cows are increasing (Thomsen et al. 2004, McConnel et al 2008). Risks associated with higher mortality include increasing herd size, average milk yield and morbidity, respiratory disease, and TMR
feeding (McConnel et al. 2008, Thomsen and Sorensen 2009). Mortality is associated with negative psychological states, as chronic stress reduces immunity which can lead to disease and mortality (Walker et al. 2012). The risk of mortality was lower in organic Danish than conventional, summer-grazed herds (Thomsen et al. 2006). Cull rates in the UK were 23.8% in the early 90’s (Esslemont and Kossaibati 1997); 22% were sold and 1.8% died on-farm. Disposals were attributed to poor fertility (36.5% of total), management policy (11.5%),

Figure 5. Welfare outcomes-based assessment of dairy cow comfort (DCWS 2012)

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Behaviour</th>
<th>Space</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injuries</td>
<td>Locomotion</td>
<td>Free-Stalls</td>
<td>Floor</td>
</tr>
<tr>
<td>Are there any injuries on the knees, hock or neck? (0=none, 1=minor, 2=severe)</td>
<td>How is their mobility? (0=good, 1=imperfect, 2=impaired/lame, 3=severely impaired very lame)</td>
<td>Do they lie and rise smoothly, without hesitating or touching partitions? Can they stand with 4 hooves in the stall, and lie without overhanging it? Are there shiny spots on the hardware (indicating repeated contact). Do they perch, dog-sit or stand diagonally? (indicates stall or lunge space is too small). Are there more stalls than number of cows?</td>
<td>Does the floor provide cushion and traction for walking? (Grooming with one leg in the air indicates good traction). Is the floor clean and dry?</td>
</tr>
<tr>
<td>Cleanliness</td>
<td>Behaviour</td>
<td>Free-Stalls</td>
<td>Floor</td>
</tr>
<tr>
<td>How clean are they? (0=clean, 1=some dirt, 2=large areas of dirt/dried manure)</td>
<td>Is their behaviour normal (including lying, general activity, rumination and feeding). Has it changed recently?</td>
<td>Do they lie and rise smoothly, without hesitating or touching partitions? Can they stand with 4 hooves in the stall, and lie without overhanging it? Are there shiny spots on the hardware (indicating repeated contact). Do they perch, dog-sit or stand diagonally? (indicates stall or lunge space is too small). Are there more stalls than number of cows?</td>
<td>Does the floor provide cushion and traction for walking? (Grooming with one leg in the air indicates good traction). Is the floor clean and dry?</td>
</tr>
<tr>
<td>Body Condition</td>
<td>Human interaction</td>
<td>Open barns</td>
<td>Bedding</td>
</tr>
<tr>
<td>Is their body condition right for the stage of lactation? (1=poor, 2=moderate, 3=good, 4=fat, 4=grossly fat)</td>
<td>What is their response to a person? Do they willingly approach or move away?</td>
<td>Is there space for every individual to lie down? Can they avoid aggressors?</td>
<td>Are you happy to drop to your knees on the stall surface? Is there any exposed concrete or patches without bedding? If you kneel on the bedding for 25s, are your knees wet? (indicates bedding is too wet). Is there hair loss on their knees or hocks? (indicates more bedding needed)</td>
</tr>
</tbody>
</table>

mastitis (10.1%), and lameness (5.6%). By the late 1990’s UK cull rates were still similar at 22.1% (Whitaker et al. 2000), with infertility, mastitis and lameness rates responsible for >50% culls and accounting for annual rates of 5.6, 3.6 and 1.7%, respectively. Involuntary culling refers to disposal due to injury, poor health (commonly mastitis and lameness) or infertility. It may involve a trade-off between the optimum finance for the farmer and the humane endpoint for the cow (Langford and Stott 2012). Investment to reduce the causes of mortality is beneficial in the long-term and reduces the need for culling and the poor welfare experienced by untreated cull cows (Langford and Stott 2012).

References

Livestock Environment IV. Coventry, UK 6-9 July 1993, 298-305

off site. 13th International Silage Conference, Scottish Agricultural College, Auchincruive, UK, pp. 16-17.

www.compassioninfoodbusiness.com

